Detection and Classification of One Conductor Open Faults in Parallel Transmission Line using Artificial Neural Network

نویسندگان

  • A. M. Abdel-Aziz
  • B. M. Hasaneen
  • A. A. Dawood
چکیده

This paper presents an artificial neural network based protection scheme for detection and classification of one conductor open faults in parallel transmission line. A 220 kV double circuit transmission line of 100 km length has been simulated using MATLAB® software and its associated Simulink® and Simpowersystem® toolboxes. The fundamental components of current signals measured at relay location are used as input to train the artificial neural network. The effect of variation in fault inception angle and fault distance location has been investigated on the performance of the proposed protection scheme. The simulation results of ANN based protection technique show that proposed algorithm correctly detects/classifies all types of one open conductor faults within one cycle time. It validates the accuracy and suitability of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Detection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network

Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...

متن کامل

Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathema...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

Detection and Classification of Faults on Transmission Line Using Wavelet Transform and Neural Network

This paper presents a discrete wavelet transform and neural network approach to fault detection and classification in transmission line faults. The detection is carried out by the analysis of the details coefficients energy of the phase signals, and as an input to neural network to classify the faults on transmission lines. Neural network perform well when faced with different fault conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017